inorganic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Redetermination of MoPt₃Si₄ from singlecrystal data

Stephane Knittel, Michel Francois, Jean Steinmetz and Michel Vilasi*

Institut Jean Lamour, UMR 7198, Département 2, Université Henri Poincaré, Nancy Université, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France

Correspondence e-mail: michel.francois@lcsm.uhpancy.fr

Received 5 November 2010; accepted 27 December 2010

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (Si–Si) = 0.004 Å; R factor = 0.029; wR factor = 0.067; data-to-parameter ratio = 21.2.

The crystal structure of molybdenum triplatinum tetrasilicide, MoPt₃Si₄, determined previously from powder diffraction data [Joubert et al. (2010). J. Solid State Chem. 183, 173-179], has been redetermined using a single crystal synthesized from the elements by high-frequency melting. The redetermination provides more precise geometrical data and also anisotropic displacement parameters. The crystal structure can be considered to be derived from the PtSi structure type with an ordered substitution of Pt by Mo atoms, but leading to a very distorted Si network compared to the parent structure. Mo and Pt exhibit different coordination polyhedra. These are based on bicapped-square antiprisms, but with two additional vertices in cis positions for Mo, whereas they are in trans positions for Pt (as in PtSi). The coordination polyhedra for three of the Si atoms can be considered as highly deformed square antiprisms (as in PtSi), while the fourth Si atom has a bicapped trigonal-prismatic coordination geometry.

Related literature

For general background to molybdenum silicides, see: Littner (2003); Benarchid et al. (2009); Bernard et al. (2010); Cabouro et al. (2007, 2008); Fitzer (1955); Knittel et al. (2010). For the structure determination of the title compound from standard X-ray powder diffraction data, see: Joubert et al. (2010). For the PAP correction program, see: Pouchou & Pichoir (1984).

Experimental

Crystal data

MoPt₃Si₄ $M_r = 793.57$ Orthorhombic, Pnma a = 5.5121 (2) Å b = 3.4951 (1) Å c = 24.3078 (7) Å

V = 468.30 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 92.80 \text{ mm}^{-1}$ T = 297 K $0.12 \times 0.03 \times 0.03 \text{ mm}$

Data collection

Bruker APEXII QUAZAR CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\rm min} = 0.031, T_{\rm max} = 0.174$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	50 parameters
$wR(F^2) = 0.067$	$\Delta \rho_{\rm max} = 2.16 \text{ e } \text{\AA}^{-3}$
S = 1.41	$\Delta \rho_{\rm min} = -3.81 \text{ e } \text{\AA}^{-3}$
1060 reflections	

9779 measured reflections

 $R_{\rm int} = 0.040$

1060 independent reflections

955 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Pt1-Si3 ⁱ	2.406 (3)	Si1-Pt2 ^{iv}	2.387 (3)
Pt1-Pt1 ⁱⁱ	2.9119 (6)	Si1-Si2	2.711 (3)
Pt2-Si1 ⁱⁱⁱ	2.387 (3)	Si2-Pt3	2.466 (3)
Pt2-Mo1 ^{iv}	2.9331 (10)	Si2-Si1	2.711 (3)
Pt3-Si3	2.405 (2)	Si3-Pt1 ^v	2.590 (2)
Pt3-Pt2	2.8874 (5)	Si3-Si3 ^{vi}	2.807 (5)
Mo1-Si4	2.535 (2)	Si4-Pt2 ^v	2.407 (2)
Mo1-Pt2 ⁱⁱⁱ	2.9331 (10)	Si4-Si4 ^{vii}	3.012 (5)

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x, y - 1, z; (vi) -x, -y, -z + 1; (vii) $x - \frac{1}{2}, y, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank Dr Holger Ott (Bruker AXS GmbH, Karlsruhe, Germany) for the data collection and the 'Service Commun de Microanalyse' (Faculté des Sciences et Techniques, Vandoeuvre les Nancy, France).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2101).

References

- Benarchid, Y., David, N., Fiorani, J.-M. & Vilasi, M. (2009). Thermochim. Acta, 494 26-29
- Bernard, F., Cabouro, G., Le Gallet, S., Chevalier, S., Gaffet, E. & Grin, Yu. (2010). Ceram. Trans. 209, 357-365.
- Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,
- Wisconsin, USA. Cabouro, G., Chevalier, S., Gaffet, E., Grin, Yu. & Bernard, F. (2008). J. Alloys
- Compd. 465. 344-355.
- Cabouro, G., Chevalier, S., Gaffet, E., Vrel, E., Boudet, N. & Bernard, F. (2007). Acta Mater. 55, 6051-6063.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Fitzer, E. (1955). Molybdenum disilicide as high-temperature material, Plansee Proc., 2nd Seminar, Reutte/Tyrol (1955), pp. 56-79.
- Joubert, J.-M., Tokaychuk, Ya. & Cerny, R. (2010). J. Solid State Chem. 183, 173-179.
- Knittel, S., Mathieu, S. & Vilasi, M. (2010). Intermetallics, 18, 2267-2274.
- Littner, A. (2003). These de Doctorat, Université Henri Poincaré de Nancy, France.
- Pouchou, J. L. & Pichoir, F. (1984). Recherche Aérospatiale, 5, 349-351.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, i20 [doi:10.1107/S1600536810054425]

Redetermination of MoPt₃Si₄ from single-crystal data

S. Knittel, M. Francois, J. Steinmetz and M. Vilasi

Comment

Interest for studying the Mo-MP-Si (MP = Pt, Ru) system follows from the attractive properties of MoSi₂ regarding high-temperature oxidation. But early in the past, the first studies performed by Fitzer (1955) mentioned the poor behaviour of this material under oxidizing atmosphere at moderate temperatures (300-600°C) due to a catastrophic degradation, the so-called "pest phenomenon". Consequently, one of the challenges for application of MoSi₂ is to control the pest oxidation by adding alloying elements (Ru, Pt, B, Al, Ge, Y, Ti, Zr, Ta) (Littner, 2003, Benarchid et al. 2009) and/or by controlling the microstructure. Recently, the optimization of the microstructure led to fully densified materials showing dramatically improved oxidation performance of MoSi₂ (Cabouro et al., 2007, Cabouro et al., 2008, Knittel et al., 2010), Bernard et al., 2010. In the course of our studies focused on the evaluation of the effect of elemental substitutions, we studied the isothermal section of the ternary phase diagram Mo-Pt-Si at 1423 K. Two new phases of composition MoPt₂Si₃ and MoPt₃Si₄ were identified (Littner, 2003), and MoPt₃Si₄ was indexed in the orthorhombic system: a = 5.5096 Å, b = 3.493 Å, c = 24.294Å. The structure of MoPt₃Si₄ was recently published by Joubert et al. (2010), from powder X-ray diffraction data. It turned out that the MoPt₃Si₄ structure can be derived from PtSi by an ordered substitution of Pt by Mo. The atomic arrangement along the c axis leads to a fourfold superstructure, with $c(MoPt_3Si_4) = 4 \times c(PtSi)$. Our analysis based on single-crystal data confirms the previous results but yields more accurate atomic positions, approximately by one order of magnitude. Additionally, this also allows determination of anisotropic displacement parameters (Fig. 1). Fig. 2 shows the coordination polyhedra. The coordination number for each d metal is 10, for Si it is 8. Mo and Pt exhibit different coordination polyhedra. In both cases, these are based on bicapped-square antiprisms, but with two additional vertices in cis-positions for Mo whereas they are in trans-positions for Pt (as in PtSi). The coordination polyhedra for Si1, Si2 and Si3 atoms can be considered as highly deformed square antiprisms (as in PtSi), while Si4 has a bicapped trigonal prismatic coordination geometry. Shortest and longest interatomic distances for each coordination polyedra are reported in Table 1. The shortest distances found for Mo—Si and Pt—Si are 2.535 (2) Å and of 2.387 (3) Å respectively. These may be compared to the values given by Joubert et al. (2010), namely 2.463 Å and 2.355 Å.

Figure 3 also emphasizes that the corrugated ribbons formed by the silicon sub-network and expanded along the *c* axis are greatly distorted compared to the PtSi parent structure.

Experimental

Metal powders with nominal purities > 99.9 (Pt sponge 270 mesh - Engelhard - Clal, Si and Mo 325 mesh: Cerac) were mixed in different atomic ratios corresponding to alloys belonging to the $MoSi_2$ — Mo_5Si_3 —PtSi domain. An ingot was prepared by high frequency melting, and stabilized in a thermodynamic equilibrium for 100 h at 1150°C under argon. Single crystals of Pt₃MoSi₄ were directly isolated from the crushed ingot. A part of the ingot was embedded in an epoxy resin, polished and microanalyzed by an electron probe (SX 50 CAMECA, - PAP correction program (Pouchou & Pichoir, 1984). The EPMA composition corresponds, within the accuracy of the measurement, to that obtained by the structural determination.

Refinement

Maximum residual electron density: highest peak 2.16 found at 0.75 Å from Pt2 and minimum residual electron density: highest hole -3.81 found at 1.22 Å from Si4

Figures

Fig. 1. Plot of the asymmetric unit of $MoPt_3Si_4$. The displacement ellipsoids are drawn at the 75% probability level. Atoms are bonded for interatomic distances lower than 3.1 Å.

Fig. 2. The unit cell and the coordination polyhedra of the atoms in the structure of $MoPt_3Si_4$. Si in blue, Pt in light grey, Mo in yellow.

Fig. 3. Corrugated ribbons from Si atoms in the structure of PtSi and MoPt₃Si₄.

 $D_{\rm x} = 11.256 {\rm Mg m}^{-3}$

Melting point: 1503 K

 $\theta = 3.4 - 33.7^{\circ}$

 $\mu = 92.80 \text{ mm}^{-1}$ T = 297 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Needle, metallic colourless

 $0.12 \times 0.03 \times 0.03 \text{ mm}$

Cell parameters from 4246 reflections

Molybdenum triplatinum tetrasilicide

Crystal data

MoPt₃Si₄ $M_r = 793.57$ Orthorhombic, *Pnma* Hall symbol: -P 2ac 2n a = 5.5121 (2) Å b = 3.4951 (1) Å c = 24.3078 (7) Å V = 468.30 (3) Å³ Z = 4F(000) = 1328

Data collection

Bruker APEXII QUAZAR CCD diffractometer	1060 independent reflections
Radiation source: ImuS	955 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.040$
ω scans	$\theta_{\text{max}} = 33.7^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -8 \rightarrow 8$
$T_{\min} = 0.031, T_{\max} = 0.174$	$k = -5 \rightarrow 5$
9779 measured reflections	$l = -34 \rightarrow 37$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0069P)^2 + 14.4673P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.067$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.41	$\Delta \rho_{max} = 2.16 \text{ e} \text{ Å}^{-3}$
1060 reflections	$\Delta \rho_{\rm min} = -3.81 \text{ e } \text{\AA}^{-3}$
50 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
0 restraints	Extinction coefficient: 0.00129 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Pt1	0.50285 (7)	0.2500	0.547907 (16)	0.00783 (11)
Pt2	0.00468 (7)	-0.2500	0.669289 (16)	0.00688 (11)
Pt3	0.00210 (7)	0.2500	0.574730 (17)	0.00783 (11)
Mo1	-0.49497 (15)	-0.2500	0.71035 (4)	0.00562 (16)
Si1	0.6616 (6)	-0.2500	0.60935 (12)	0.0071 (5)
Si2	0.3216 (6)	0.2500	0.64573 (12)	0.0072 (5)
Si3	0.1790 (6)	-0.2500	0.51984 (12)	0.0076 (5)
Si4	-0.1678 (6)	-0.7500	0.72502 (12)	0.0071 (5)

Atomic	displacement	parameters	(A^2)
--------	--------------	------------	---------

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Pt1	0.00828 (19)	0.00729 (18)	0.00793 (19)	0.000	0.00011 (13)	0.000
Pt2	0.00732 (18)	0.00574 (16)	0.00759 (19)	0.000	0.00034 (13)	0.000

Pt3	0.00835 (18)	0.00728 (17)	0.00787 (18)	0.000	-0.00006 (13)	0.000
Mo1	0.0068 (3)	0.0044 (3)	0.0057 (3)	0.000	0.0003 (3)	0.000
Si1	0.0086 (11)	0.0063 (11)	0.0064 (1	2)	0.000	-0.0006 (10)	0.000
Si2	0.0092 (12)	0.0055 (12)	0.0068 (1	2)	0.000	-0.0021 (10)	0.000
Si3	0.0090 (12)	0.0063 (12)	0.0075 (1	1)	0.000	0.0004 (10)	0.000
Si4	0.0099 (12)	0.0033 (11)	0.0082 (1	2)	0.000	-0.0006 (10)	0.000
Geometric param	neters (Å, °)						
Pt1—Si3 ⁱ		2.406 (3)		Mo1—S	Si1 ^v	2.6	602 (3)
Pt1—Si1		2.460 (2)		Mo1—P	t2 ^{xi}	2.9	256 (10)
Pt1—Si1 ⁱⁱ		2.460 (2)		Mo1—P	rt2	2.9	029 (1)
Pt1—Si2		2.579 (3)		Mo1—P	t2 ^v	2.9	9331 (10)
Pt1—Si3		2.590 (2)		Si1—Pt2	2 ⁱⁱⁱ	2.3	887 (3)
Pt1—Si3 ⁱⁱ		2.590 (2)		Si1—Pti	1 ^{vi}	2.4	60 (2)
Pt1—Pt3 ⁱⁱⁱ		2.8281 (6)		Si1—Pt	1	2.4	60 (2)
Pt1—Pt3		2.8362 (6)		Si1—Mo	o1 ⁱⁱⁱ	2.6	602 (3)
Pt1—Pt1 ⁱ		2.9119 (6)		Si1—Pt3	3 ⁱⁱⁱ	2.6	699 (2)
Pt1—Pt1 ^{iv}		2.9119 (6)		Sil—Pt3	3 ^{xiii}	2.6	699 (2)
Pt2—Si1 ^v		2.387 (3)		Si1—Si2	2 ^{vi}	2.7	/11 (3)
Pt2—Si4 ⁱⁱ		2.407 (2)		Si1—Si2	2	2.7	/11 (3)
Pt2—Si4		2.407 (2)		Si2—Pt3	3	2.4	66 (3)
Pt2—Si2		2.536 (2)		Si2—Pt2	2 ⁱⁱ	2.5	536 (2)
Pt2—Si2 ^{vi}		2.536 (2)		Si2—Pt2	2	2.5	536 (2)
Pt2—Pt3 ^{vi}		2.8874 (5)		Si2—Mo	o1 ^{xiv}	2.5	558 (2)
Pt2—Pt3		2.8874 (5)		Si2—Mo	o1 ⁱⁱⁱ	2.5	58 (2)
Pt2—Mo1 ^{vii}		2.9255 (10)		Si2—Pt	1	2.5	579 (3)
Pt2—Mo1		2.9294 (10)		Si2—Si	1 ⁱⁱ	2.7	/11 (3)
Pt2—Mo1 ⁱⁱⁱ		2.9331 (10)		Si2—Si	1	2.7	/11 (3)
Pt3—Si3		2.405 (2)		Si3—Pt	1 ^{vi}	2.5	590 (2)
Pt3—Si3 ⁱⁱ		2.405 (2)		Si3—Pt	1	2.5	590 (2)
Pt3—Si2		2.466 (3)		SI3—Pt.	3	2.4	05 (2)
Pt3—Si3 ^{viii}		2.506 (3)		Si3—Pt3	3 ^{vi}	2.4	05 (2)
Pt3—Si1 ^v		2.699 (2)		Si3—Pt	1 ⁱ	2.4	06 (3)
Pt3—Si1 ^{ix}		2.699 (2)		Si3—Ptá	3 ^{viii}	2.5	506 (3)
Pt3—Pt1 ^v		2.8281 (6)		Si3—Si3	3^{xv}	2.8	807 (5)
Pt3—Pt1		2.836(1)		Si3—Si	3 ^{viii}	2.8	807 (5)
Pt3—Pt2 ⁱⁱ		2.8874 (5)		Si4—Pt2	2 ^{vi}	2.4	07 (2)
Pt3—Pt2		2.8874 (5)		Si4—Pt2	2	2.4	07 (2)
Mo1—Si4		2.535 (2)		Si4—Mo	o1 ^{vii}	2.5	535 (2)
Mo1—Si4 ⁱⁱ		2.537 (2)		Si4—Me	o1 ^{xvi}	2.5	535 (2)
Mo1—Si4 ^x		2.535 (2)		Si4—Mo	o1 ^{vi}	2.5	537 (2)
Mo1—Si4 ^{xi}		2.535 (2)		Si4—Mo	01	2.5	536 (2)

Mo1—Si2 ^{xii}	2.558 (2)	Si4—Si4 ^{vii}	3.012 (5)
Mo1—Si2 ^v	2.558 (2)	Si4—Si4 ^{xi}	3.012 (5)
Si3 ⁱ —Pt1—Si1	98.99 (9)	Si4 ⁱⁱ —Mo1—Si4	87.10 (10)
Si3 ⁱ —Pt1—Si1 ⁱⁱ	98.99 (9)	Si4 ^x —Mo1—Si2 ^{xii}	134.65 (10)
Si1—Pt1—Si1 ⁱⁱ	90.54 (10)	Si4 ^{xi} —Mo1—Si2 ^{xii}	76.18 (8)
Si3 ⁱ —Pt1—Si2	155.99 (10)	Si4 ⁱⁱ —Mo1—Si2 ^{xii}	146.93 (10)
Si1—Pt1—Si2	65.04 (8)	Si4—Mo1—Si2 ^{xii}	84.07 (8)
Si1 ⁱⁱ —Pt1—Si2	65.04 (8)	Si4 ^x —Mo1—Si2 ^v	76.18 (8)
Si3 ⁱ —Pt1—Si3	108.80 (8)	Si4 ^{xi} —Mo1—Si2 ^v	134.65 (10)
Si1—Pt1—Si3	85.75 (8)	Si4 ⁱⁱ —Mo1—Si2 ^v	84.07 (8)
Si1 ⁱⁱ —Pt1—Si3	152.21 (10)	Si4—Mo1—Si2 ^v	146.93 (10)
Si2—Pt1—Si3	88.61 (8)	Si2 ^{xii} —Mo1—Si2 ^v	86.18 (9)
Si3 ⁱ —Pt1—Si3 ⁱⁱ	108.80 (8)	Si4 ^x —Mo1—Si1 ^v	135.16 (5)
Si1—Pt1—Si3 ⁱⁱ	152.21 (10)	Si4 ^{xi} —Mo1—Si1 ^v	135.16 (5)
Si1 ⁱⁱ —Pt1—Si3 ⁱⁱ	85.75 (8)	Si4 ⁱⁱ —Mo1—Si1 ^v	84.07 (9)
Si2—Pt1—Si3 ⁱⁱ	88.61 (8)	Si4—Mo1—Si1 ^v	84.08 (9)
Si3—Pt1—Si3 ⁱⁱ	84.88 (9)	Si2 ^{xii} —Mo1—Si1 ^v	63.37 (8)
Si3 ⁱ —Pt1—Pt3 ⁱⁱⁱ	56.52 (7)	Si2 ^v —Mo1—Si1 ^v	63.37 (8)
Si1—Pt1—Pt3 ⁱⁱⁱ	60.91 (7)	Si4 ^x —Mo1—Pt2 ^{xi}	51.70 (6)
Si1 ⁱⁱ —Pt1—Pt3 ⁱⁱⁱ	60.91 (7)	Si4 ^{xi} —Mo1—Pt2 ^{xi}	51.70 (6)
Si2—Pt1—Pt3 ⁱⁱⁱ	99.47 (7)	Si4 ⁱⁱ —Mo1—Pt2 ^{xi}	81.95 (7)
Si3—Pt1—Pt3 ⁱⁱⁱ	137.02 (5)	Si4—Mo1—Pt2 ^{xi}	81.94 (7)
Si3 ⁱⁱ —Pt1—Pt3 ⁱⁱⁱ	137.02 (5)	Si2 ^{xii} —Mo1—Pt2 ^{xi}	127.87 (6)
Si3 ⁱ —Pt1—Pt3	150.09 (8)	Si2 ^v —Mo1—Pt2 ^{xi}	127.87 (6)
Si1—Pt1—Pt3	101.93 (7)	Si1 ^v —Mo1—Pt2 ^{xi}	160.67 (8)
Si1 ⁱⁱ —Pt1—Pt3	101.93 (7)	Si4 ^x —Mo1—Pt2	124.35 (7)
Si2—Pt1—Pt3	53.91 (7)	Si4 ^{xi} —Mo1—Pt2	124.35 (7)
Si3—Pt1—Pt3	52.39 (6)	Si4 ⁱⁱ —Mo1—Pt2	51.64 (6)
Si3 ⁱⁱ —Pt1—Pt3	52.39 (6)	Si4—Mo1—Pt2	51.64 (6)
Pt3 ⁱⁱⁱ —Pt1—Pt3	153.38 (2)	Si2 ^{xii} —Mo1—Pt2	99.35 (7)
Si3 ⁱ —Pt1—Pt1 ⁱ	57.34 (5)	Si2 ^v —Mo1—Pt2	99.35 (7)
Si1—Pt1—Pt1 ⁱ	93.62 (5)	Si1 ^v —Mo1—Pt2	50.71 (7)
Si1 ⁱⁱ —Pt1—Pt1 ⁱ	156.33 (7)	Pt2 ^{xi} —Mo1—Pt2	109.96 (3)
Si2—Pt1—Pt1 ⁱ	137.15 (4)	Si4 ^x —Mo1—Pt2 ^v	81.81 (7)
Si3—Pt1—Pt1 ⁱ	51.45 (7)	Si4 ^{xi} —Mo1—Pt2 ^v	81.81 (7)
Si3 ⁱⁱ —Pt1—Pt1 ⁱ	100.77 (6)	Si4 ⁱⁱ —Mo1—Pt2 ^v	135.76 (5)
Pt3 ⁱⁱⁱ —Pt1—Pt1 ⁱ	101.239 (19)	Si4—Mo1—Pt2 ^v	135.76 (5)
Pt3—Pt1—Pt1 ⁱ	99.983 (19)	Si2 ^{xii} —Mo1—Pt2 ^v	54.50 (6)
Si3 ⁱ —Pt1—Pt1 ^{iv}	57.34 (5)	Si2 ^v —Mo1—Pt2 ^v	54.50 (6)
Si1—Pt1—Pt1 ^{iv}	156.33 (7)	Si1 ^v —Mo1—Pt2 ^v	89.47 (7)

Si1 ⁱⁱ —Pt1—Pt1 ^{iv}	93.62 (5)	Pt2 ^{xi} —Mo1—Pt2 ^v	109.86 (3)
Si2—Pt1—Pt1 ^{iv}	137.15 (4)	Pt2—Mo1—Pt2 ^v	140.18 (4)
Si3—Pt1—Pt1 ^{iv}	100.77 (6)	Pt2 ⁱⁱⁱ —Si1—Pt1	130.73 (7)
Si3 ⁱⁱ —Pt1—Pt1 ^{iv}	51.45 (7)	Pt2 ⁱⁱⁱ —Si1—Pt1 ^{vi}	130.73 (7)
Pt3 ⁱⁱⁱ —Pt1—Pt1 ^{iv}	101.239 (19)	Pt1—Si1—Pt1 ^{vi}	90.54 (10)
Pt3—Pt1—Pt1 ^{iv}	99.983 (19)	Pt2 ⁱⁱⁱ —Si1—Mo1 ⁱⁱⁱ	71.76 (8)
Pt1 ⁱ —Pt1—Pt1 ^{iv}	73.760 (19)	Pt1—Si1—Mo1 ⁱⁱⁱ	117.05 (9)
Si1 ^v —Pt2—Si4 ⁱⁱ	91.76 (9)	Pt1 ^{vi} —Si1—Mo1 ⁱⁱⁱ	117.05 (9)
Si1 ^v —Pt2—Si4	91.76 (9)	Pt2 ⁱⁱⁱ —Si1—Pt3 ⁱⁱⁱ	68.87 (7)
Si4 ⁱⁱ —Pt2—Si4	93.12 (11)	Pt1—Si1—Pt3 ⁱⁱⁱ	66.30 (4)
Si1 ^v —Pt2—Si2	114.06 (8)	Pt1 ^{vi} —Si1—Pt3 ⁱⁱⁱ	121.20 (11)
Si4 ⁱⁱ —Pt2—Si2	84.19 (8)	Mo1 ⁱⁱⁱ —Si1—Pt3 ⁱⁱⁱ	121.65 (8)
Si4—Pt2—Si2	154.07 (10)	Pt2 ⁱⁱⁱ —Si1—Pt3 ^{xiii}	68.87 (7)
Si1 ^v —Pt2—Si2 ^{vi}	114.06 (8)	Pt1—Si1—Pt3 ^{xiii}	121.20 (11)
Si4 ⁱⁱ —Pt2—Si2 ^{vi}	154.07 (10)	Pt1 ^{vi} —Si1—Pt3 ^{xiii}	66.30 (4)
Si4—Pt2—Si2 ^{vi}	84.19 (8)	Mo1 ⁱⁱⁱ —Si1—Pt3 ^{xiii}	121.65 (8)
Si2—Pt2—Si2 ^{vi}	87.10 (10)	Pt3 ⁱⁱⁱ —Si1—Pt3 ^{xiii}	80.71 (9)
Si1 ^v —Pt2—Pt3 ^{vi}	60.68 (5)	Pt2 ⁱⁱⁱ —Si1—Si2	110.40 (11)
Si4 ⁱⁱ —Pt2—Pt3 ^{vi}	152.32 (7)	Pt1—Si1—Si2	59.61 (7)
Si4—Pt2—Pt3 ^{vi}	90.38 (6)	Pt1 ^{vi} —Si1—Si2	114.21 (13)
Si2—Pt2—Pt3 ^{vi}	103.92 (6)	Mo1 ⁱⁱⁱ —Si1—Si2	57.52 (8)
Si2 ^{vi} —Pt2—Pt3 ^{vi}	53.60 (6)	Pt3 ⁱⁱⁱ —Si1—Si2	99.50 (4)
Si1 ^v —Pt2—Pt3	60.68 (5)	Pt3 ^{xiii} —Si1—Si2	179.13 (14)
Si4 ⁱⁱ —Pt2—Pt3	90.38 (6)	Pt2 ⁱⁱⁱ —Si1—Si2 ^{vi}	110.40 (11)
Si4—Pt2—Pt3	152.32 (7)	Pt1—Si1—Si2 ^{vi}	114.21 (13)
Si2—Pt2—Pt3	53.60 (6)	Pt1 ^{vi} —Si1—Si2 ^{vi}	59.61 (7)
Si2 ^{vi} —Pt2—Pt3	103.93 (6)	Mo1 ⁱⁱⁱ —Si1—Si2 ^{vi}	57.52 (8)
Pt3 ^{vi} —Pt2—Pt3	74.490 (14)	Pt3 ⁱⁱⁱ —Si1—Si2 ^{vi}	179.13 (14)
Si1 ^v —Pt2—Mo1 ^{vii}	127.65 (7)	Pt3 ^{xiii} —Si1—Si2 ^{vi}	99.50 (4)
Si4 ⁱⁱ —Pt2—Mo1 ^{vii}	55.76 (6)	Si2—Si1—Si2 ^{vi}	80.27 (12)
Si4—Pt2—Mo1 ^{vii}	55.76 (6)	Pt3—Si2—Pt2 ⁱⁱ	70.50 (7)
Si2—Pt2—Mo1 ^{vii}	103.02 (7)	Pt3—Si2—Pt2	70.50 (7)
Si2 ^{vi} —Pt2—Mo1 ^{vii}	103.02 (7)	Pt2 ⁱⁱ —Si2—Pt2	87.10 (10)
Pt3 ^{vi} —Pt2—Mo1 ^{vii}	142.754 (7)	Pt3—Si2—Mo1 ^{xiv}	135.41 (6)
Pt3—Pt2—Mo1 ^{vii}	142.754 (7)	Pt2 ⁱⁱ —Si2—Mo1 ^{xiv}	70.30 (5)
Si1 ^v —Pt2—Mo1	57.54 (7)	Pt2—Si2—Mo1 ^{xiv}	127.17 (12)
Si4 ⁱⁱ —Pt2—Mo1	55.73 (7)	Pt3—Si2—Mo1 ⁱⁱⁱ	135.41 (6)
Si4—Pt2—Mo1	55.73 (7)	Pt2 ⁱⁱ —Si2—Mo1 ⁱⁱⁱ	127.17 (12)
Si2—Pt2—Mo1	136.42 (5)	Pt2—Si2—Mo1 ⁱⁱⁱ	70.30 (5)
Si2 ^{vi} —Pt2—Mo1	136.42 (5)	Mo1 ^{xiv} —Si2—Mo1 ⁱⁱⁱ	86.17 (9)
Pt3 ^{vi} —Pt2—Mo1	105.463 (19)	Pt3—Si2—Pt1	68.37 (8)

Pt3—Pt2—Mo1	105.463 (19)	Pt2 ⁱⁱ —Si2—Pt1	118.36 (8)
Mo1 ^{vii} —Pt2—Mo1	70.12 (2)	Pt2—Si2—Pt1	118.36 (8)
Si1 ^v —Pt2—Mo1 ⁱⁱⁱ	162.29 (8)	Mo1 ^{xiv} —Si2—Pt1	114.39 (9)
Si4 ⁱⁱ —Pt2—Mo1 ⁱⁱⁱ	100.36 (8)	Mo1 ⁱⁱⁱ —Si2—Pt1	114.39 (9)
Si4—Pt2—Mo1 ⁱⁱⁱ	100.36 (8)	Pt3—Si2—Si1 ⁱⁱ	105.40 (11)
Si2—Pt2—Mo1 ⁱⁱⁱ	55.20 (6)	Pt2 ⁱⁱ —Si2—Si1 ⁱⁱ	96.07 (4)
Si2 ^{vi} —Pt2—Mo1 ⁱⁱⁱ	55.20 (6)	Pt2—Si2—Si1 ⁱⁱ	173.71 (13)
Pt3 ^{vi} —Pt2—Mo1 ⁱⁱⁱ	105.996 (19)	Mo1 ^{xiv} —Si2—Si1 ⁱⁱ	59.11 (7)
Pt3—Pt2—Mo1 ⁱⁱⁱ	105.996 (19)	Mo1 ⁱⁱⁱ —Si2—Si1 ⁱⁱ	111.55 (13)
Mo1 ^{vii} —Pt2—Mo1 ⁱⁱⁱ	70.06 (2)	Pt1—Si2—Si1 ⁱⁱ	55.35 (8)
Mo1—Pt2—Mo1 ⁱⁱⁱ	140.18 (4)	Pt3—Si2—Si1	105.40 (11)
Si3—Pt3—Si3 ⁱⁱ	93.20 (11)	Pt2 ⁱⁱ —Si2—Si1	173.71 (13)
Si3—Pt3—Si2	95.67 (9)	Pt2—Si2—Si1	96.07 (4)
Si3 ⁱⁱ —Pt3—Si2	95.67 (9)	Mo1 ^{xiv} —Si2—Si1	111.55 (13)
Si3—Pt3—Si3 ^{viii}	69.67 (9)	Mo1 ⁱⁱⁱ —Si2—Si1	59.11 (7)
Si3 ⁱⁱ —Pt3—Si3 ^{viii}	69.67 (9)	Pt1—Si2—Si1	55.35 (8)
Si2—Pt3—Si3 ^{viii}	157.89 (10)	Si1 ⁱⁱ —Si2—Si1	80.27 (12)
Si3—Pt3—Si1 ^v	89.11 (7)	Pt3—Si3—Pt3 ^{vi}	93.20 (11)
Si3 ⁱⁱ —Pt3—Si1 ^v	157.71 (9)	Pt3—Si3—Pt1 ⁱ	132.47 (6)
Si2—Pt3—Si1 ^v	106.16 (8)	Pt3 ^{vi} —Si3—Pt1 ⁱ	132.47 (6)
Si3 ^{viii} —Pt3—Si1 ^v	90.52 (8)	Pt3—Si3—Pt3 ^{viii}	110.33 (9)
Si3—Pt3—Si1 ^{ix}	157.72 (9)	Pt3 ^{vi} —Si3—Pt3 ^{viii}	110.33 (9)
Si3 ⁱⁱ —Pt3—Si1 ^{ix}	89.11 (7)	Pt1 ⁱ —Si3—Pt3 ^{viii}	70.27 (8)
Si2—Pt3—Si1 ^{ix}	106.16 (8)	Pt3—Si3—Pt1 ^{vi}	128.58 (13)
Si3 ^{viii} —Pt3—Si1 ^{ix}	90.52 (8)	Pt3 ^{vi} —Si3—Pt1 ^{vi}	69.08 (4)
Si1 ^v —Pt3—Si1 ^{ix}	80.71 (9)	Pt1 ⁱ —Si3—Pt1 ^{vi}	71.20 (7)
Si3—Pt3—Pt1 ^v	105.46 (7)	Pt3 ^{viii} —Si3—Pt1 ^{vi}	121.08 (9)
Si3 ⁱⁱ —Pt3—Pt1 ^v	105.46 (7)	Pt3—Si3—Pt1	69.08 (4)
Si2—Pt3—Pt1 ^v	148.91 (8)	Pt3 ^{vi} —Si3—Pt1	128.58 (13)
Si3 ^{viii} —Pt3—Pt1 ^v	53.20 (7)	Pt1 ⁱ —Si3—Pt1	71.20 (7)
Si1 ^v —Pt3—Pt1 ^v	52.79 (6)	Pt3 ^{viii} —Si3—Pt1	121.08 (9)
Si1 ^{ix} —Pt3—Pt1 ^v	52.79 (6)	Pt1 ^{vi} —Si3—Pt1	84.88 (9)
Si3—Pt3—Pt1	58.53 (7)	Pt3—Si3—Si3 ^{xv}	110.98 (16)
Si3 ⁱⁱ —Pt3—Pt1	58.53 (7)	Pt3 ^{vi} —Si3—Si3 ^{xv}	56.86 (7)
Si2—Pt3—Pt1	57.71 (7)	Pt1 ⁱ —Si3—Si3 ^{xv}	106.10 (14)
Si3 ^{viii} —Pt3—Pt1	100.18 (7)	Pt3 ^{viii} —Si3—Si3 ^{xv}	53.47 (10)
Si1 ^v —Pt3—Pt1	138.45 (5)	Pt1 ^{vi} —Si3—Si3 ^{xv}	98.92 (3)
Si1 ^{ix} —Pt3—Pt1	138.45 (5)	Pt1—Si3—Si3 ^{xv}	174.46 (16)
Pt1 ^v —Pt3—Pt1	153.38 (2)	Pt3—Si3—Si3 ^{viii}	56.86 (7)
Si3—Pt3—Pt2 ⁱⁱ	151.56 (8)	Pt3 ^{vi} —Si3—Si3 ^{viii}	110.98 (16)
Si3 ⁱⁱ —Pt3—Pt2 ⁱⁱ	89.99 (6)	Pt1 ⁱ —Si3—Si3 ^{viii}	106.10 (14)

Si2—Pt3—Pt2 ⁱⁱ	55.90 (5)	Pt3 ^{viii} —Si3—Si3 ^{viii}	53.47 (10)
Si3 ^{viii} —Pt3—Pt2 ⁱⁱ	137.07 (3)	Pt1 ^{vi} —Si3—Si3 ^{viii}	174.46 (16)
Si1 ^v —Pt3—Pt2 ⁱⁱ	98.46 (5)	Pt1—Si3—Si3 ^{viii}	98.92 (3)
Si1 ^{ix} —Pt3—Pt2 ⁱⁱ	50.46 (6)	Si3 ^{xv} —Si3—Si3 ^{viii}	77.02 (16)
Pt1 ^v —Pt3—Pt2 ⁱⁱ	100.856 (15)	Pt2—Si4—Pt2 ^{vi}	93.11 (11)
Pt1—Pt3—Pt2 ⁱⁱ	100.265 (15)	Pt2—Si4—Mo1 ^{vii}	72.54 (5)
Si3—Pt3—Pt2	89.99 (6)	Pt2 ^{vi} —Si4—Mo1 ^{vii}	134.49 (14)
Si3 ⁱⁱ —Pt3—Pt2	151.57 (8)	Pt2—Si4—Mo1 ^{xvi}	134.49 (14)
Si2—Pt3—Pt2	55.90 (5)	Pt2 ^{vi} —Si4—Mo1 ^{xvi}	72.54 (5)
Si3 ^{viii} —Pt3—Pt2	137.07 (3)	Mo1 ^{vii} —Si4—Mo1 ^{xvi}	87.14 (10)
Si1 ^v —Pt3—Pt2	50.46 (6)	Pt2—Si4—Mo1 ^{vi}	134.58 (13)
Si1 ^{ix} —Pt3—Pt2	98.46 (5)	Pt2 ^{vi} —Si4—Mo1 ^{vi}	72.63 (4)
Pt1 ^v —Pt3—Pt2	100.855 (15)	Mo1 ^{vii} —Si4—Mo1 ^{vi}	146.00 (13)
Pt1—Pt3—Pt2	100.265 (15)	Mo1 ^{xvi} —Si4—Mo1 ^{vi}	83.07 (4)
Pt2 ⁱⁱ —Pt3—Pt2	74.490 (14)	Pt2—Si4—Mo1	72.63 (4)
Si4 ^x —Mo1—Si4 ^{xi}	87.14 (10)	Pt2 ^{vi} —Si4—Mo1	134.58 (13)
Si4 ^x —Mo1—Si4 ⁱⁱ	72.85 (5)	Mo1 ^{vii} —Si4—Mo1	83.07 (4)
Si4 ^{xi} —Mo1—Si4 ⁱⁱ	130.91 (7)	Mo1 ^{xvi} —Si4—Mo1	146.01 (13)
Si4 ^x —Mo1—Si4	130.91 (6)	Mo1 ^{vi} —Si4—Mo1	87.10 (10)
Si4 ^{xi} —Mo1—Si4	72.85 (5)		

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*-1, *y*, *z*; (vi) *x*, *y*-1, *z*; (vii) *x*+1/2, *y*, -*z*+3/2; (viii) -*x*, -*y*, -*z*+1; (ix) *x*-1, *y*+1, *z*; (x) *x*-1/2, *y*+1, -*z*+3/2; (xi) *x*-1/2, *y*, -*z*+3/2; (xii) *x*-1, *y*-1, *z*; (xiii) *x*+1, *y*-1, *z*; (xiv) *x*+1, *y*+1, *z*; (xv) -*x*, -*y*-1, -*z*+1; (xvi) *x*+1/2, *y*-1, -*z*+3/2.

